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5-10% of planned extubations fail for all ICU patients.1 Failed extubation is 
associated with significantly increased mortality and other adverse outcomes.1 

Mechanical ventilation (MV) is associated with many complications including 
pneumonia, lung injury, delirium, decreased physical activity, laryngeal damage 
and diaphragm dysfunction.2 There is an unmet need for greater predictive 
accuracy to optimize decision-making and maximize successful extubation 
outcomes. Here, we explore machine learning models as a novel approach to 
predict outcomes after extubation in the ICU3,4 
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A machine learning model that accurately predicts extubation success could serve 
as a decision support tool to identify the ideal duration of mechanical ventilation for 
each patient and to decrease the risk of complications. The aims of this study are 
to predict the likelihood of successful extubation and describe features that are 
associated with extubation outcome. We hypothesized that machine learning 
models could be trained to accurately and efficiently predict extubation outcomes. 

The data used in this study was from the Philips eICU clinical research 
database which contains >200,000 ICU admissions from 208 institutions 
across the United States.5 All adult patients who were extubated were 
included in the analysis. Patients were grouped into two classes: reintubated 
(n=7999) within 72h, and non-reintubated (n=30659). Features were 
considered from the entirety of a patient’s first first time on MV with the task of 
learning physiology to predict whether the patient extubated would require 
reintubation. Exposure variables of interest included age, gender, laboratory 
results, MV duration, severity of respiratory failure, history of congestive heart 
failure, neurologic state, motor scores, sepsis/septic shock, fluid balance, 
medications, standard pulmonary variables, procedures, prior diagnoses, and 
physiology-derived data. The observation window included data from the 6 
hours preceding extubation from each patient’s first MV occurrence. The 
prediction window was 72 hours following extubation. Three different machine 
learning (ML) algorithms, generalized linear model (GLM), random forest 
(RF), and gradient boosting (XGboost), were evaluated.

Out of all the unique mechanically ventilated patients in the eICU database 
(n=38,769), the outcome class of non-reintubation (n=30,659) represented the 
majority of patients where the reintubation class (n=7,999) represented the 
remainder, excluding those who were reintubated following a time interval that 
exceeds 72 hours. XGBoost was the best performing model with AUROC: 0.81
±0.01, sensitivity: 0.78±0.02, and specificity: 0.70±0.02.
Each model utilized a total of 114 features, which were selected from a collection 
of 1310 respiratory, demographic, clinical, and physiologic features. Of those 
features ranked within the top 50 as shown in Figure 2, the majority among the top 
25 are MV or respiratory variables the eICU database. The most important 
features apart from these respiratory values include the last recorded motor score, 
surgical history, and age.
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Table 1. Performance metric summary of the eICU-CRD developed 
model for the clinical endpoints of final extubation and extubation failure 
followed by reintubation. Results show a worse performance under the 
Generalized Linear Model, which is likely due to extraneous features that 
produce noise.

Model XGBoost Random 
Forest

GLM

Accuracy
0.71

(0.72, 0.70)
0.71

(0.74, 0.68)
0.60

(0.61, 0.60)

AUROC
0.81

(0.82, 0.80)
0.80

(0.81, 0.79)
0.70

(0.71, 0.69)

Sensitivity
0.78

(0.80, 0.76)
0.76

(0.79, 0.72)
0.72

(0.74, 0.70)

Specificity
0.70

(0.71, 0.68)
0.70

(0.74, 0.65)
0.57

(0.58, 0.56)

Precision Recall 
AUROC

0.52
(0.54, 0.51)

0.50
(0.53, 0.48)

0.35
(0.36, 0.34)

Precision
0.40

(0.41, 0.39)
0.40

(0.42, 0.37)
0.31

(0.31, 0.30)

Recall
0.78

(0.80, 0.76)
0.76

(0.79, 0.72)
0.72

(0.74, 0.70)

Figure 1 (top). XGBoost SHapley Additive exPlanations (SHAP) 
summary of the top 50 features over 5 outer fold iterations. Most 
important features are listed at the top. The color gradient 
represents the recorded value of each feature observation. A 
positive SHAP value indicates a higher probability of extubation 
failure.

Figure 2 (left). Receiver operating characteristic curve and 95% 
confidence intervals of the generalized linear model (GLM), random 
forest (RF), and XGBoost (XG) models. GLM models can be seen 
to struggle slightly due to increased dimensionality of the feature 
space. XGboost and Random forest models perform similarly with 
an average AUROC of 0.81 and 0.80 respectively.
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